Frequency and Q measurements on the TEVATRON RF spare cavity for different modes and temperatures. J.-P. Carneiro Fermi National Accelerator Laboratory, Batavia, IL 60510 USA July 14, 2005 ### 1 Introduction The TEVATRON has eight RF cavities installed and operated in the F0 straight section. These cavities operate as two independent groups of four cavities, cavities 1-3-5-7 accelerating antiprotons and cavities 2-4-6-8 accelerating protons. A cavity contains two quarter-wave resonators placed back to back with a coaxial drift tube separating the two accelerating gaps by π radians. Each cavity has a Q of \sim 6400, a shunt impedance of 1.2 M Ω and is capable of running cw with a peak accelerating voltage of 360 kV (180 kV per gap). A temperature control water system circulates tempered water through the drift tube to tune the cavities at the operation frequency of 53.104 MHz. Details on the TEVATRON High Level RF System can be found in reference [1]. We have undertaken a measurement of the frequency and quality factor Q of some of the main High Order Modes (HOMs) of the TEVATRON spare cavity with the motivation to monitor the dependence of these two parameters with respect to the temperature [2]. # 2 Experimental Results The TEVATRON spare cavity, installed at the MI60 hall, is water cooled and under vacuum. The frequency and the quality factor of the main HOMs were measured for a cavity temperature of $T=30^\circ$, $T=35^\circ$ and $T=40^\circ$ and these measurements are reported in Tables 1, 2 and 3 respectively. The losses of the HOMs are also reported in the tables, which give an idea of their relative strength. Measurements were done using a Network Analyzer (AGILENT 8753ES) in transmission S_{21} . The measurement of the full width at half height $\Delta \omega_H$ of the stored energy versus the excitation energy curve leads to the Q of the modes through the relation : $$Q = \frac{w_0}{\Delta \omega_H} \tag{1}$$ The results presented in Tables 1 to 3 are reported in Figures 1 to 6. The interesting results shown by these Figures is that the shifts of the frequency, the quality factor and the losses of the HOMs due to the temperature do not follow the shift of the fundamental mode. ## 3 Conclusion The fact that the frequency and quality factor dependence of the HOMs on the cavity temperature do not follow the one of the fundamental mode may explain some of the longitudinal instabilities observed with beam at the TEVATRON through the longitudinal beam impedance due to the HOMs in the cavity. Studies are in progress [2]. The measurement of the shunt impedance R/Q of the HOMs was not realized during these measurements since it would have required to brake the vacuum. Nevertheless we report in Table 4 the measurement done in 1995 by D. Sun for some of the modes. Figure 7 compare the Q measured in 1995 in good agreement with the ones measured at $T=35^{\circ}\mathrm{C}$. The author would like to thank J. Reid for changing the temperature of the cavity, T. Berenc for helping with the operation of the network analyzer and D. Sun for discussion on the measurements and for providing the 1995 RF measurements results of Table 4. # References - [1] Q. Kerns *et al.*, "Fermilab Tevatron High Level RF Accelerating Systems", PAC 1985 - [2] Y. Alexahin, private communication. Figure 1: Frequency shift for the different modes for $T=30^{\circ}\mathrm{C}$ and $T=40^{\circ}\mathrm{C}$ with respect to $T=35^{\circ}\mathrm{C}$. Mode #1 corresponds to the fundamental mode. Figure 2: Same as Figure 1 with frequency of the different modes at $T=35^{\circ}\mathrm{C}$ in the X-axis. Figure 3: Quality Factor Q for the different modes for $T=30^{\circ}{\rm C},\,T=35^{\circ}{\rm C}$ and $T=40^{\circ}{\rm C}.$ Figure 4: Quality Factor shift for the different modes for $T=30^{\circ}\mathrm{C}$ and $T=40^{\circ}\mathrm{C}$ with respect to $T=35^{\circ}\mathrm{C}$. Mode #1 corresponds to the fundamental mode. Figure 5: Losses for the different modes for $T=30^{\circ}\text{C}$, $T=35^{\circ}\text{C}$ and $T=40^{\circ}\text{C}$. Figure 6: Losses shift for the different modes for $T=30^{\circ}\mathrm{C}$ and $T=40^{\circ}\mathrm{C}$ with respect to $T=35^{\circ}\mathrm{C}$. Mode #1 corresponds to the fundamental mode. | | $T = 30^{\circ} \text{C}$ | | | | |------------------------|---------------------------|--------|-------------|--| | | f [MHz] | Q | Losses [dB] | | | Fundamental Mode f_0 | 53.121108 | 6468.7 | -56.357 | | | Mode #2 | 54.498597 | 264.41 | -84.190 | | | Mode #3 | 56.617297 | 3826.3 | -91.027 | | | Mode #4 | 157.735874 | 8770.4 | -88.407 | | | Mode #5 | 210.178431 | 5225.5 | -83.924 | | | Mode #6 | 218.266180 | 5421.8 | -76.041 | | | Mode #7 | 310.651430 | 15445 | -31.429 | | | Mode #8 | 424.311317 | 7411.8 | -40.156 | | | Mode #9 | 439.771282 | 13648 | -26.493 | | | Mode #10 | 496.113798 | 7201.1 | -57.296 | | | Mode #11 | 504.711560 | 5572.9 | -35.156 | | | Mode #12 | 510.191172 | 4646.8 | -59.124 | | | Mode #13 | 534.115817 | 12060 | -74.107 | | | Mode #14 | 538.941097 | 5877.3 | -81.739 | | | Mode #15 | 558.865004 | 14481 | -33.766 | | | Mode #16 | 575.610228 | 6777.9 | -75.226 | | | Mode #17 | 582.381984 | 5743.1 | -67.276 | | | Mode #18 | 585.295053 | 3491.0 | -72.320 | | | Mode #19 | 591.334842 | 1668.2 | -48.772 | | | Mode #20 | 664.854942 | 14995 | -21.522 | | | Mode #21 | 748.491138 | 25028 | -21.715 | | | Mode #22 | 767.576021 | 17503 | -30.783 | | | Mode #23 | 840.111757 | 19311 | -31.695 | | | Mode #24 | 942.837607 | 25237 | -39.590 | | | Mode #25 | 990.249087 | 11917 | -28.129 | | | Mode #26 | 1027.465091 | 18987 | -19.483 | | | Mode #27 | 1049.975043 | 4154.6 | -39.249 | | | Mode #28 | 1105.249688 | 6992.2 | -42.469 | | | Mode #29 | 1131.542068 | 10516 | -46.144 | | | Mode #30 | 1176.118368 | 5030.1 | -76.499 | | | Mode #31 | 1195.518274 | 10660 | -77.801 | | Table 1: RF measurements for $T=30^{\circ}\mathrm{C}$. | | $T=35^{\circ}\mathrm{C}$ | | | | |------------------------|--------------------------|--------|-------------|--| | | f [MHz] | Q | Losses [dB] | | | Fundamental Mode f_0 | 53.112558 | 6415.3 | -56.440 | | | Mode #2 | 54.485981 | 249.3 | -84.216 | | | Mode #3 | 56.615905 | 3342.9 | -91.219 | | | Mode #4 | 157.720184 | 9106.2 | -88.810 | | | Mode #5 | 210.166673 | 5443.0 | -83.791 | | | Mode #6 | 218.244644 | 5362.4 | -76.091 | | | Mode #7 | 310.611421 | 14997 | -31.575 | | | Mode #8 | 424.292639 | 7381.7 | -40.151 | | | Mode #9 | 439.726561 | 13577 | -26.474 | | | Mode #10 | 496.103261 | 7219 | -57.397 | | | Mode #11 | 504.708837 | 5552.1 | -35.075 | | | Mode #12 | 510.184303 | 4651.3 | -59.081 | | | Mode #13 | 534.113306 | 11728 | -73.766 | | | Mode #14 | 538.934296 | 6018 | -81.641 | | | Mode #15 | 558.814406 | 14257 | -33.889 | | | Mode #16 | 575.603335 | 6819.1 | -75.278 | | | Mode #17 | 582.374755 | 5738.7 | -67.241 | | | Mode #18 | 585.287998 | 3449.9 | -72.308 | | | Mode #19 | 591.323306 | 1679.0 | -48.738 | | | Mode #20 | 664.823471 | 14724 | -21.665 | | | Mode #21 | 748.435012 | 23823 | -21.881 | | | Mode #22 | 767.538742 | 17381 | -30.381 | | | Mode #23 | 840.052588 | 18966 | -31.857 | | | Mode #24 | 942.792041 | 23549 | -40.306 | | | Mode #25 | 990.211538 | 11532 | -28.414 | | | Mode #26 | 1027.423450 | 18728 | -19.609 | | | Mode #27 | 1049.938005 | 4199.9 | -39.145 | | | Mode #28 | 1105.193620 | 6900.3 | -42.487 | | | Mode #29 | 1131.501988 | 10487 | -46.110 | | | Mode #30 | 1176.090981 | 5463.7 | -76.595 | | | Mode #31 | 1195.485692 | 10549 | -78.023 | | Table 2: RF measurements for $T=35^{\circ}$ C. | | $T = 40^{\circ} \text{C}$ | | | | |------------------------|---------------------------|--------|-------------|--| | | f [MHz] | Q | Losses [dB] | | | Fundamental Mode f_0 | 53.107538 | 6398.5 | -56.490 | | | Mode #2 | 54.476917 | 238.36 | -84.513 | | | Mode #3 | 56.615933 | 3528.3 | -91.275 | | | Mode #4 | 157.709452 | 7674.4 | -88.705 | | | Mode #5 | 210.157997 | 5556.0 | -83.771 | | | Mode #6 | 218.230273 5542.6 | | -76.041 | | | Mode #7 | 310.583671 | 15281 | -31.548 | | | Mode #8 | 424.282751 | 7361.2 | 40.153 | | | Mode #9 | 439.697687 | 13532 | -24.483 | | | Mode #10 | 496.098786 | 7174.3 | -57.510 | | | Mode #11 | 504.710468 | 5516.2 | -35.063 | | | Mode #12 | 510.182777 | 4642.5 | -59.064 | | | Mode #13 | 534.114064 | 11811 | -73.680 | | | Mode #14 | 538.930290 | 5687.5 | -82.073 | | | Mode #15 | 558.780964 | 14432 | -33.922 | | | Mode #16 | 575.601352 | 6982.3 | -75.302 | | | Mode #17 | 582.372878 | 5731.2 | -67.172 | | | Mode #18 | 585.283358 | 3488.6 | -72.339 | | | Mode #19 | 591.315481 | 1680.6 | -48.731 | | | Mode #20 | 664.801470 | 14649 | -21.724 | | | Mode #21 | 748.398308 | 24598 | -21.751 | | | Mode #22 | 767.515521 | 17255 | -30.928 | | | Mode #23 | 840.013053 | 19317 | -31.835 | | | Mode #24 | 942.763018 | 22797 | -40.760 | | | Mode #25 | 990.185714 | 11467 | -28.459 | | | Mode #26 | 1027.395286 | 18532 | -19.717 | | | Mode #27 | 1049.912209 | 4110.6 | -39.336 | | | Mode #28 | 1105.146054 | 6971.7 | -42.391 | | | Mode #29 | 1131.459069 | 10621 | -45.961 | | | Mode #30 | 1176.057224 | 5591.5 | -76.698 | | | Mode #31 | 1195.453702 | 11416 | -78.205 | | Table 3: RF measurements for $T=40^{\circ}$ C. | | Measurements 1995 | | Measurements 2005 | | | | |------------------------|-------------------|-------|-------------------|------------|--------|-------------| | | f [MHz] | Q | R/Q | f[MHz] | Q | Losses [dB] | | Fundamental Mode f_0 | 53.11375 | 6523 | 109.6 | 53.112558 | 6415.3 | -56.440 | | Mode #2 | 56.50625 | 3620 | 18.81 | 56.615905 | 3342.9 | -91.219 | | Mode #3 | 158.2325 | 6060 | 11.68 | 157.720184 | 9106.2 | -88.810 | | Mode #4 | 310.6775 | 15923 | 7.97 | 310.611421 | 14997 | -31.575 | | Mode #5 | 424.24875 | 6394 | 1.28 | 424.292639 | 7381.7 | -40.151 | | Mode #6 | 439.7725 | 13728 | 5.23 | 439.726561 | 13577 | -26.474 | | Mode #7 | 498.4975 | 8326 | < 0.01 | 496.103261 | 7219 | -57.397 | | Mode #8 | 559.4825 | 13928 | 6.73 | 558.814406 | 14257 | -33.889 | | Mode #9 | 583.39375 | 8986 | 0.11 | 582.374755 | 5738.7 | -67.241 | | Mode #10 | 592.39375 | 10402 | 0.21 | 591.323306 | 1679.0 | -48.738 | | Mode #11 | 664.7125 | 13763 | 0.35 | 664.823471 | 14724 | -21.665 | | Mode #12 | 748.1800 | 13356 | 10.90 | 748.435012 | 23823 | -21.881 | | Mode #13 | 768.030 | 16191 | 2.47 | 767.538742 | 17381 | -30.381 | Table 4: Comparison of RF measurements done in the TEVATRON spare cavity in 1995 and 2005. Figure 7: Comparison of the quality factor for different modes measured in 1995 and 2005. Datas from Table 4.